Roll No.:

325833(25)

B. E. (Eighth Semester) Examination, 2020

(New Scheme)

(EEE Engg. Branch)

COMPUTER AIDED POWER SYSTEM

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Define Tree and Co-tree.

2

325833(25)

PTO

- (b) Discuss the step by step method of formation of Y_{bus} 7
- (c) Explain in brief the procedure for formation of Y_{bus} using singular transformation. Derive the necessary equations.
- (d) An incomplete nodal admittance matrix for a 4-bus system with negligible charging admittance is given below. Find missing terms:

7

2

$$\begin{bmatrix} 0 \cdot 7 - j_3 & -0 \cdot 2 + j_1 & -0 \cdot 5 + j_2 & y_{14} \\ y_{21} & y_{22} & -0 \cdot 3 + j_2 & -0 \cdot 5 + j_3 \\ y_{31} & y_{32} & y_{33} & -1 + j_4 \\ y_{41} & y_{42} & y_{43} & y_{44} \end{bmatrix}$$

Unit-II

- 2. (a) Why are fault studies important?
 - (b) For the 3-bus network shown in fig. 1, find build Z_{bus} .

Fig. 1

- (c) A generator experiences a double line to ground fault in phase b and c through a fault impedance Z_f . Derive the necessary expression for this fault and hence give the connection between three sequence networks.
- (d) Why the phase shift in the positive sequence and negative sequence quantities through a star delta transformer are opposite to each other? Explain in brief.

Co Unit-IH count man guisans

- 3. (a) What is meant by optimal load flow?
 - (b) Draw and explain flow chart for fast decoupled load flow method.

7

7

(c) Write short notes on optimal load flow technique.

7

2

(d) Find bus admittance matrix for the system shown in fig. 2.

Fig. 2

Unit-IV

- **4.** (a) What is the essential difference between steady state stability and transient stability?
 - (b) Write down the swing equation and drive the expression for iterative solution of swing equation using modified Euler method.

325833(25)

(c) How can the transient stability of a system be improved?

Discuss the traditional as well as new approaches to

	the problem.	7
	(d) A 50 Hz, 4 pole turbogenerator rated 100 mVA, 11	
	kV has an inertia constant of 0.8 MJ/mVA:	
	(i) Find the stored energy in the rotar at synchronous speed.	
	(ii) If the mechanical input is suddenly raised to 80	
	MW for an electrical load of 50 MW, find rotar	
	acceleration, neglecting mechanical and electrical	
	losses.	
	(iii) If the acceleration calculated in part (ii) is	
	maintained for 10 cycles. Find the change in	
	torque angle and rotar speed in revolution per	
	minute at the end of this period. $1+3+3=$	- 7
Unit-V		
5.	(a) What is contingency analysis?	2
	(b) Discuss the factors affecting power system security.	7

(c) Explain AC power flow method of contingency analysis. 7

PTO

325833(25)

- (d) Explain following terms: (any two)
 - (i) Contingency selection
 - (ii)Network sensitivity method for contingency analysis

7

Static security analysis at control centers (iii)

10]

325833(25)